
Topic 1
Introduction to
Internet and World
Wide Web

CST4013 | Website Designing

Learning
outcomes
▪ Describe the concept of internet and

website.

▪ Discuss the categories of website

development.

Internet
and World
Wide Web

Internet World Wide Web (WWW)

The internet is a global
network of interconnected
computers and devices that
communicate using
standardized protocols.

The WWW is a global system
of interconnected documents
and resources, accessed via
the internet.

It allows for the transfer of
data and information
between connected devices
regardless of their location.

It allows users to navigate
between web pages by
clicking on hyperlinks, which
are typically denoted by
blue, underlined text

The internet enables various
services such as email, web
browsing, file sharing, online
gaming, and more.

These web pages may
contain various types of
content, including text,
images, videos, and
interactive elements.

Website and Webpage

Webpage

▪ A webpage is a single document or file

containing content that is displayed in a

web browser.

Website

▪ A website is a collection of related

web pages and other digital assets

(such as images, videos, and

interactive elements) that are hosted

on a web server and accessible via the

Internet.

Types of Websites

Static Websites

▪ A static website consists of web pages

with fixed content.

▪ The content of these pages is delivered

exactly as stored, meaning it doesn’t

change unless manually updated by a

developer.

Dynamic Websites

▪ A dynamic website is more complex

and provides interactive features, with

content that can change based on user

interactions or other factors.

▪ This type of site can pull data from

databases and adjust its content

accordingly.

Types of Websites

Static Websites Characteristics

▪ Fixed content

▪ Simple structure

▪ No server-side processing

▪ Faster loading

▪ Limited Interactivity

Dynamic Websites Characteristics

▪ Interactive content

▪ Server-side scripting

▪ Database integration

▪ Complexity

Types of Websites

Static Websites uses

▪ Personal blogs

▪ Portfolio websites

▪ Business websites

Dynamic Websites uses

▪ E-commerce websites

▪ Social media platform

▪ Banking websites

Web Designing
▪ Web designing is the process of

creating the visual appearance and

layout of websites.

▪ It involves a combination of graphic

design, user interface (UI) design, and

user experience (UX) design to

produce aesthetically pleasing and

functional websites

Web Development
▪ Web development refers to the

process of building and maintaining

websites.

▪ It involves a combination of tasks and

skills used to create the various

aspects of a website or web

application, from its layout and design

to its functionality and interactivity.

Web Development Categories
▪ Front-End Development (Client-Side)

▪ This focuses on what the user interacts with directly in a web browser.

▪ It involves creating the visual aspects of the website such as layout, design, and

navigation.

▪ Front-end developers use HTML (Hypertext Markup Language) to structure the

content, CSS (Cascading Style Sheets) for styling and layout, and JavaScript to add

interactivity and dynamic elements.

▪ The goal is to provide a seamless and engaging user experience.

Web Development Categories
▪ Back-End Development (Server-Side)

▪ This involves the behind-the-scenes operations of a website, including managing

databases, user authentication, and server-side logic.

▪ Back-end developers typically work with server-side languages such as PHP,

Python, Ruby, Java, and databases like MySQL, PostgreSQL, or MongoDB.

▪ The back end is responsible for processing requests made by the front end,

retrieving or storing data, and sending the appropriate response back to the client.

Web Development Categories
▪ Full-Stack Development

▪ A full-stack developer works on both the front-end and back-end of a website or

web application.

▪ They are proficient in both client-side and server-side technologies, allowing them

to handle the entire development process.

Technologies of
Web Development
▪ HTML (Hypertext Markup Language)

▪ HTML is the backbone of every web
page.

▪ This is the standard language used to
create and structure content on the
web.

▪ It defines the structure of a webpage
using tags and elements, like headings,
paragraphs, images, and links.

Technologies of
Web Development
▪ CSS (Cascading Style Sheets)

▪ CSS controls the look and feel of the

website.

▪ It styles the HTML elements, including

setting colors, fonts, spacing, and

positioning, and ensures a consistent

layout across different screen sizes

and devices.

Technologies of
Web Development
▪ JavaScript

▪ JavaScript adds interactivity to
websites.

▪ It can manipulate HTML and CSS
dynamically, responding to user
actions such as clicks or form
submissions, and allowing for features
like animations, real-time updates, and
interactive elements.

Setting Up the Development
Environment

1. Choosing a Text Editor or Integrated

Development Environment (IDE)

2. Installing a Web Browser

3. Setting Up a Local Web Server

4. Version Control with Git

5. Installing Front-End and Back-End Tools

6. Package Managers and Frameworks

7. Testing and Debugging Tools

Choosing a Text Editor or Integrated
Development Environment (IDE)
▪ A text editor or IDE is where you will write the code for your website.

▪ Visual Studio Code (VS Code)

▪ A powerful, lightweight text editor with extensive plugin support for HTML, CSS, JavaScript, and
other languages.

▪ It offers features like code completion, debugging tools, and version control integration.

▪ Sublime Text

▪ Known for its speed and simplicity,

▪ It has syntax highlighting and supports various programming languages.

▪ Atom

▪ A customizable, open-source text editor that offers features like a built-in package manager and a
wide range of plugins.

Installing a Web
Browser
▪ A modern web browser is essential for testing

and debugging.

▪ Developers should use multiple browsers for
cross-browser compatibility testing includes:

• Google Chrome: Known for its developer tools
(DevTools), which allow you to inspect
elements, debug JavaScript, and test
performance.

• Mozilla Firefox: Offers similar developer tools
to Chrome, with additional focus on privacy
and security.

• Safari and Microsoft Edge are also widely
used for testing.

Setting Up a
Local Web
Server

• A free and open-source cross-platform web server
solution package that includes Apache, MySQL,
PHP, and Perl.

• It's a great option for developing PHP-based
websites.

XAMPP

• Similar to XAMPP but designed for macOS.

• It allows you to run a local server environment
using Apache, MySQL, and PHP.

MAMP

• For simple static websites (HTML, CSS, JavaScript),
the Live Server extension in VS Code creates a
local server and automatically reloads the page
when changes are made.

Live Server (VS Code Extension)

Version Control with Git
▪ Git is a version control system that allows developers to track changes in their code

and collaborate with other developers.

▪ Git:

▪ Install Git from git-scm.com.

▪ It’s a command-line tool but also use it via Git GUI applications like GitHub Desktop or

SourceTree.

▪ GitHub:

▪ A popular online platform to store and share code repositories.

▪ Can use GitHub to host your projects, track issues, and collaborate with others.

Installing Front-End and Back-End
Tools
▪ Front-End Tools

▪ Node.js: A JavaScript runtime environment used for building server-side applications.

Node.js comes with npm (Node Package Manager) that helps you manage libraries and

dependencies.

▪ CSS Preprocessors (e.g., Sass, LESS): These tools extend CSS by adding features like

variables, nested rules, and mixins. Install them using npm.

▪ JavaScript Frameworks (e.g., React, Angular, Vue.js): These libraries and frameworks

help organize and speed up front-end development by offering reusable components

and advanced features

Installing Front-End and Back-End
Tools
▪ Back-End Tools

▪ PHP, Python (Django, Flask), or Ruby on Rails

▪ These are some of the most popular back-end programming languages and frameworks.

▪ Setting up these environments will require downloading the language’s runtime and a web

server (e.g., Apache or Nginx).

▪ Database Management Systems

▪ MySQL, PostgreSQL, or MongoDB are commonly used databases.

▪ Install a local version or use a service like MongoDB Atlas for cloud-based storage.

Package Managers and Frameworks
▪ npm (Node Package Manager) helps you manage JavaScript libraries and

dependencies.

▪ Yarn: A popular alternative to npm, which speeds up the package management

process.

▪ Frameworks and Libraries:

▪ For JavaScript, React, Vue.js, and Angular provide powerful ways to build dynamic, single-

page applications.

▪ CSS frameworks like Bootstrap or Tailwind CSS provide pre-built styles and components that

help create responsive designs quickly.

Testing and Debugging Tools
▪ Browser Developer Tools: Use the built-in dev tools in browsers like Chrome and

Firefox to inspect the HTML/CSS structure, debug JavaScript, and monitor network

activity.

▪ Linting Tools: These tools help identify issues in your code (e.g., ESLint for JavaScript,

Stylelint for CSS) and enforce coding standards.

▪ Automated Testing Tools: Frameworks like Jest (for JavaScript) or Selenium (for end-

to-end testing) help automate testing processes to ensure functionality across all

parts of your website.

Client-
Server
Model

The client-server model is a fundamental
concept in computer networks and web
development, where two entities, the client
and the server, communicate over a
network to exchange data or services.

The client is a device or program that sends
requests to the server, which is a system or
application that responds to those requests.

The server typically provides some kind of
service, such as delivering data, processing
information, or handling operations.

Key Components of Client-server Model
▪ Client:

▪ The client is any device or application that makes requests for services or resources from a

server.

▪ Common clients include web browsers (Chrome, Firefox, Safari), mobile apps, and email

clients.

▪ Server:

• The server is a machine or program that waits for requests from clients and then processes

those requests to provide the required services.

• A server can host various services, such as websites (web servers), email services (email

servers), file storage (file servers), and more.

Key Components
of Client-server
Model
▪ Communication Protocol:

▪ The communication between the client

and the server is usually governed by

specific protocols.

▪ For example, HTTP/HTTPS for web

browsing, FTP for file transfers, or SMTP

for email communication.

▪ These protocols define how the data is

structured, transmitted, and received.

Examples of the Client-Server Model
▪ Web Browsing

▪ When you open a website, your browser (client) sends a request to a web server.

▪ The server processes the request and returns the webpage, which is displayed in the browser.

▪ Email

▪ Your email client (Outlook, Gmail, etc.) sends requests to the email server, which retrieves or

sends email messages.

▪ Database Access

▪ A database client (e.g., an application) requests data from a database server, which processes

the query and returns the data.

The Role of Web Browsers
▪ Request Handling:

▪ Browsers act as clients, sending HTTP/HTTPS requests to web servers when users access a

URL or click on a link.

▪ They request resources such as HTML documents, CSS stylesheets, JavaScript files, images,

and multimedia.

▪ Rendering Content:

▪ Browsers receive responses from the server and render the content for display.

▪ This involves interpreting HTML for structure, CSS for design, and JavaScript for interactivity.

The Role of Web Browsers
▪ User Interaction:

▪ Browsers allow users to interact with websites through forms, buttons, and other elements.

▪ These interactions often result in new requests to the server for data or actions.

▪ Developer Tools:

▪ Modern browsers provide built-in tools (e.g., Chrome DevTools, Firefox Developer Tools) to

debug and analyze web pages, aiding in development and troubleshooting.

The Role of Web Servers
▪ Resource Hosting

▪ Servers store and manage the files required to display a website, such as HTML, CSS, and

JavaScript files.

▪ Request Processing

▪ Servers receive HTTP/HTTPS requests, process them, and send appropriate responses back

to the client.

The Role of Web Servers
▪ Middleware Integration

▪ In dynamic websites, servers act as intermediaries, handling requests, querying databases,

and returning results.

▪ Security and Performance

▪ Servers enforce security protocols like HTTPS, ensuring encrypted communication.

▪ They optimize performance using caching, load balancing, and compression techniques.

Thank you

	Slide 1: Topic 1 Introduction to Internet and World Wide Web
	Slide 2: Learning outcomes
	Slide 3: Internet and World Wide Web
	Slide 4: Website and Webpage
	Slide 5: Types of Websites
	Slide 6: Types of Websites
	Slide 7: Types of Websites
	Slide 8: Web Designing
	Slide 9: Web Development
	Slide 10: Web Development Categories
	Slide 11: Web Development Categories
	Slide 12: Web Development Categories
	Slide 13: Technologies of Web Development
	Slide 14: Technologies of Web Development
	Slide 15: Technologies of Web Development
	Slide 16: Setting Up the Development Environment
	Slide 17: Choosing a Text Editor or Integrated Development Environment (IDE)
	Slide 18: Installing a Web Browser
	Slide 19: Setting Up a Local Web Server
	Slide 20: Version Control with Git
	Slide 21: Installing Front-End and Back-End Tools
	Slide 22: Installing Front-End and Back-End Tools
	Slide 23: Package Managers and Frameworks
	Slide 24: Testing and Debugging Tools
	Slide 25: Client-Server Model
	Slide 26: Key Components of Client-server Model
	Slide 27: Key Components of Client-server Model
	Slide 28: Examples of the Client-Server Model
	Slide 29: The Role of Web Browsers
	Slide 30: The Role of Web Browsers
	Slide 31: The Role of Web Servers
	Slide 32: The Role of Web Servers
	Slide 33: Thank you

